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A novel Monte Carlo method has been applied to the calculation of the unperturbed dimensions of 
various monodisperse polymers, e.g. star polymers, branched polymers formed by the crosslinking of 
linear primary chains, and linear chains with some intramolecular cycles. Where results for the para- 
meters h -1 and g (representing the effect of branching upon the hydrodynamic radius and the radius 
of gyration, respectively) were known previously, agreement is good. The method can, however, be 
applied to furnish other statistical averages for polymers of any arbitrary branched structure, and the 
effects of polydispersity may also be included. 

INTRODUCTION 

Since 1949 when Flory I introduced the concept of the 0 
state for a polymer in dilute solution at a particular (0) tem- 
perature, the statistics of polymers with unperturbed dimen- 
sions (i.e. with a 'Markovian' end-to-end distance distribution) 
have been well studied by, amongst others, Zimm and 
Stockmayer 2 and Kurata and Fukatsu 3. In this paper we 
show how, by using equation (1), the so-called Zimm- 
Stockmayer ~ relationship (see also ref 4) and the Gaussian 
subchain approximation, a novel Monte Carlo method 
enables the statistics of star, branched chain and ring con- 
raining polymers to be calculated, without recourse to the 
unwieldy formulae which are required for polymers of spe- 
cific architecture (see e.g. ref 3), and with a method in 
principle applicable to any distribution of molecular chain 
lengths (molecular weight distribution). We note here that 
Gupta and Forsman s'6 have evaluated the complete distribu- 
tion functions for the radius of gyration for both linear and 
branched molecules, although their elegant matrix graph 
theoretical method seems difficult to generalize to deal with 
the effect of polydispersity. The molecular parameters con- 
sidered here are the mean unperturbed radius of gyration 
($2)0 and the unperturbed Stokes radius (Rs-1) 0. The latter 
is the minus first moment of segment end-to-end distribu- 
tions and is related to frictional properties of polymer solu- 
tions. Some of the results obtained in this paper have been 
obtained before by analytic methods - the advantage offered 
by the Monte Carlo method is its generality and simplicity. 
To illustrate this, the data of Allen, Burgess, Edwards and 
Walsh 7 for cyclization of linear polymers is satisfactorily 
fitted, without the use of the sophisticated self-consistent 
field (SCF) method s. 

THEORY 

The Zimm-Stockmayer formula 2,4 relates the radius of gyra- 
tion of unperturbed monodisperse polymer chains to the dis- 
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tance between the ith and ]th segments of the chains Ri]: 

?/ F/ 

1 1 
($2)°:2-n-2 Z Z <R2)° :~  Z E <R2)O (1) 

i = l j = l  j > i  

where n is the number of segments. For Gaussian subchains, 
(each subchain obeying random flight statistics) we have: 

(R2)o = li - ]Ib 2 (2) 

with b the intersegrnental distance (or more generally the 
length of a Kuhn statistical segment). From equations (1) 
and (2): 

g/ ?/ 

1 
($2)0=~-~ E Z l i - ] l b  2 

i / 

(3) 

Replacing the sums by integrals we easily obtain: 

nb 2 
($2)o - 

6 
(4) 

for a linear monodisperse chain. 
Kirkwood's 9 general expression for the frictional con- 

stant of a macromolecule of n chain elements may be 
written: 

E0= (n~0)--1 +(3n.r/sn2)-I Z Z (Ri/'-I)0 

/ > i  

(5) 

where -'-0 is the frictional constant, ~0 the friction constant 
of a single chain element, and r/s the solvent viscosity. For 
long chains (where the effect of hydrodynamic shielding is 
dominant) we may neglect the term (n~0) -1, and the effec- 
tive Stokes radius may be written: 
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(Rs_l)o=67rr/s~61 = 2 ~ ~ (R~]I) 0 (6) 
n 2 

/ > i  

The distribution over (R350 is usually preaveraged so that we 
obtain from equation (2): 

1 
(Ri/150- - li - ] ll/2b (7) 

and replacing the double sum 

] > i  

by integrals we findl°: 

(8) 

Equations (1), (2) and (6) may be applied to non-linear 
polymers when the segments are labelled in the correct 
order. Thus Zimm and Stockmayer 2 and Kurata and 
Fukatsu 3 have derived formulae for g defined by: 

_ (S2)O, br 

g--  ($250,/ 
(9) 

(when n is constant) where the subscripts br and l refer to 
branched and linear polymers. 

Similarly, using the Ham 11 and Zimm-Kilb 12 theories 
various workers, e.g. Stockmayer and Fixman t3' Kurata and 
Fukatsu 3 and Ptitsyn a4, obtained values for the parameter h: 

(Rs-1)0,1 
h - - -  (10) 

(R s-1)O,br 

The parameters h andg 1/2 were believed to be equal but 
Kurata and Fukatsu showed theoretically that for their ran- 
domly branched and comb polymers the function hg-1/2 
was greater than unity. Zimm and Kilb ~2 assumed that the 
ratio of the intrinsic viscosities of branched to linear poly- 
mers (with the same number of segments) was: 

[rl]br ~'g 1/2 (1 1) 

(in contradiction to the Flory-Fox theory is which predicts 
a g3/2 dependence). The effect of branching on the intrinsic 
viscosity is thus expected to be greater than on the frictional 
constant. 

All the above discussion is strictly valid only for constant 
n, i.e. monodisperse molecular weight distribution, and in 
the words of Flory ~6 'in seeking to observe the influence on 
a given physical property of the introduction of polyfunc- 
tional units into an otherwise linear polymer, the resulting 
broadening of the distribution is likely to be of much 
greater consequence than the alteration of the average di- 
mensions of molecules of a given degree of polymerisation'. 
For random f-functional polycondensates the method of 
Dobson and Gordon z7 using Kramer's theorem Is is useful, 
and using the path weighting generating function method, 
Kajiwara 19'2° calculated the Stokes radius for the same sys- 

tern. For random crosslinking of primary chains of known 
molecular weight distribution, Gordon and Kajiwara 21 were 
able to calculate ($2)0, but because of the mathematical dif- 
ficulties inherent in their method they could not obtain 
(R s- 150, because of the unavoidable inversion necessary to 
obtain the first negative moment of the path distribution. 

COMPUTATIONAL METHODS 

Sampling 
The computational method we have developed for the 

calculation of ($250 is based upon equation (3), and as an 
illustration we consider the construction of a random star 
molecule of functionality, f. This macromolecule has f 
branches, with a total of n segments. For convenience n is 
chosen to be 6 x 10 4, and b the statistical segment is taken 
to be unity. This gives ($250,l, the radius of gyration of the 
linear polymer molecule with the same number of segments, 
to be equal to 6 x 104/6 (equation 4) = 10 4 units, andg 
values are found directly. 

The random number generator is used to produce f -  1 
integers, Xi,  i = 1 , 2 . . . f - l ,  in the range 1-n. ) ([ is  defined 
to have the value n. The X i represent the jr- 1 'cuts' to pro- 
duce f sections of chain. These sections are then reassemb- 
led to form an f-functional star. The segments are numbered 
serially so that that particular segment with index X k repre- 
sents the segment on the kth arm of the star, which is con- 
nected to the other f -  1 arms of the nucleus of the star. Two 
more integers, 1 and J (ordered so that J > / ) ,  representing 
the indices of the segments denoted] and i, respectively, are 
then selected in the same range 1 < I < J <  n, so that if e.g. 
Xt < I < X 2 ,  then segment i is on the second arm of the 
star, and the path from i to the centre of the star is X 2 - I  
segments in length. Similarly if X 2 < J < X 3, the total 
length of the path from the segment denoted i to j is given 
by: 

(R~) 0 = (X 2 _ / )  + (X 3 _ jr) (12) 

If, however, both i and] are on the same arm of the star, i.e. 
for example, X 3 < I < J < X 4, then (R~) 0 is simply (J - / ) .  
Then, writing: 

all paths 
l 

7_, 
I ] 

(13) 

we replace the double sum 

all paths 

by n 2(Rij 250, with (R~.j250 the mean value of (R/~50 over, 
say, p Monte Carlo cycles: 

p 

= 1- (R .5o and,,,,,2 
P 

The value of ($25O is then given by: 
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Figure I Graph-like representation of polymer molecules: (a) four 
branch random star, (b) branched polymer formed by the crosslink- 
ing of three linear polymer chains, (c) linear polymer with three intra- 
molecular cycles. The dashed line represents a path from the segment 
denoted i to that denoted j .  Other details as in text 

(_.t12)0~ _ 1 l i - J I  
2 2 

That this preaveraging is valid readily checks for a linear 
chain when b r -  J I = n/3, and ($2)0 = n/6 as it should be. 

N o w p  typically can be taken to be ~ 10 4 Monte Carlo 
cycles 1 / M -  the only restrictions being those on computer time, 

2 and on the convergence of  ( R . ) .  - so that for the examples 
2 7 q v  here the ratio n /p ~ ( 1 0 ) .  

The sampling technique is thus extremely efficient, and 
the only problem is in correctly constructing algorithms to 
mirror the more complex one-dimensional topologies rep- 
resenting the non-uniform star, chain and ring copolymers. 

Network  topologies 

Star branched molecules. To illustrate the construction 
of different networks, consider Figure 1. Figure la  repre- 
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sents the star macromolecule with f (---4 in this case) branches. 
The four branches ae, be, ce and de consist respectively of 
A, B, C and D segments (.4 + B + C + D --- n), and the seg- 
ments are numbered serially so that if the index I of  the seg- 
ment denoted i is numerically A < 1 <  A + B, then i is on 
branch be. For uniform stars, A = B = C = D, whereas for 
random* stars A, B, C and D are equal respectively to n x 
q(O,1)/(A +B + C +D);1  a n d J  are themselves equal to n x 
q(0,1)(I  < J). 

Crosslinked chain molecules. In Figure l (b )  is a typical 
three branch (i.e. m = 3) chain molecule with chains aXlb, 
cx 2x 3 d and ex4f  of  length AB, CD and EF, respectively. 
For uniform branches, A B  = CD = EF, whereas for random 
branching each is set equal to n × q(0,1)](AB + CD + EF), so 
that A B  + CD + E F  = n. The/ th  crosslink xl, l = 
1 , 2 . . .  2 ( f -  1) is again generated at random so that e.g. X 1 
= A B  x q(0,1), and the position of  segments i and/" in the 
network are generated so that L J  = q(0,1)(I < J). The unique 
path through the crosslinks Xl - x2 and x 3 - x 4 then enables 
the calculation of  the mean square distance (R2.) o. The 

• q 
length of the crosshnks x l  x 2 etc. was assumed throughout 
to be zero. 

Cyclized linear polymers. The system of Allen et al. 7,8 
consists of  a linear polymer chain in which a small number 
of  sites are preactivated at random along the chain. A very 
dilute solution of  the polymer is made up, and then these 
preactivated sites allowed to react pairwise to form cycles. 
In this mechanism, for small numbers of  cycles i.e. small 
numbers of activated sites, cyclization is assumed not to be 
governed by Gaussian statistics i.e. the probability p(x)  that 
a ring of, say, x units is formed is assumed independent ofx.  
The normal Gaussian ring closure would give p(x )  ~ x -3/2 
so that small rings are heavily favoured. 

Molecules with (at least) m pairs (see ref 22) of  rings 
were generated by selecting the segments k r and l r (contact 
pairs), which make up the r th  ring, for example, and the 
segments i and/" in the manner outlined above. Now equa- 
tion (3) is only valid for tree molecules, in which there is a 
unique path between i and/", so we use the heuristic 'span- 
ning tree' approximation of  'breaking' one bond in each 
cycle, so converting each graph into one of  its spanning trees. 
A unique path is constructed by firstly tracing a path ( i - i ' )  
along the beads from i in a direction chosen at random, until 
the first bead i '  is encountered which is a member of a con- 
tact pair. Similarly a path q '  -/") is traced from/" to the 
first encountered j '  belonging to a contact pair. The shortest 
(of the many possible) path from i '  to/"' is found by a mini- 
mum path algorithm 23. The mean square distance (R2)0 is 
then taken as that of  the path ( i - f ) - q ' - / " )  (provided no 
bead on that path occurs more than once; otherwise the at- 
tempt is rejected). In a modification of  the program which 
should produce an estimate of  the lower bound for ($2)0, 
the d i s t ances / - I '  and J ' - J  were also the shortest possible 
paths. 

For this system no attempt was made to calculate (R~-I) 0, 
the approximations involved being even more gross for the 
reciprocal moment of  the distribution (R~I). Further, the 

* In this paper we use 'random' to mean chosen at random from a 
block distribution undei a specific constraint. This means that each 
arm of the star may consist of 1 ,2 . . . ,  n - f + 1 segments with equal 
probability. The constraint is that the total number of segments in all 
farms is equal to n. This is completely different to a Flory or most 
probable distribution of chain lengths (sometimes called 'random'), 
in which the probability that a chain consists of x-mer falls asymp- 
totically as exp(-x) for large x. 
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Table I (a) Results for f-functional uniform star polymer 

h _1/2 
f gFOUND hg -z/2 ($2)0 gFOUND 

CONT 
gCONT (Rs l )o  -1 hFOUND hC;1ONT 

2 1.000 1.000 1.000 X 104 1.000 1.000 1.493 X 10 -2 1.000 1.000 
3 1.076 1.074 0.777 X 104 0.777 0.777 1.577 X 10 -2 1.056 1.055 
4 1.128 1.127 0.626 X 104 0.626 0.625 1.674 X 10 -2 1.121 1.121 
5 1.167 1.166 0.520 × 104 0.520 0.520 1.775 × 10 -2 1.189 1.188 
6 1.198 1.194 0.445 X 104 0.445 0.444 1.874 X 10 -2 1.255 1.253 
8 1.237 1.236 0.343 × 104 0.343 0.344 2.063 X 10 -2 1.382 1.378 

10 1.264 1.262 0.280 X 1 04 0.280 0.280 2.236 X 10 -2 1.498 1.495 

(b) Results for f-functional random star polymer 

- 1  - 1  
-1/2 hg-l/2 (S~O gFOUND gCONT {Rs l )o  hFOUN D hCONT f hgFOt)ND CONT 

2 1.000 1.000 1.002 x 104 1.000 1.000 1.50 X 10 - 2  1.000 1.000 
3 1.026 1.024 0.900 X 104 0.900 0.900 1.54 X 10" 2 1.027 1.029 
4 1.048 1.049 0.800 X 104 0.800 0.800 1.60 x 10 -2 1.067 1.066 
5 1.068 1.068 0.715 X 104 0.715 0.714 1.66 X 10 -2 1.107 1.108 
6 1.082 1.083 0.643 X 104 0.643 0.643 1.73 X 10 -2 1.153 1.151 
8 1.111 1.109 0.534 X 104 0.534 0.533 1.85 X 10 -2 1.233 1.235 

10 1.129 1.126 0.455 × 104 0.455 0.454 1.97 X 10 -2 1.313 1.318. 

(c) Results for random crosslinking of m uniform primary chains 

-1/2 _1 
m hgFOUND ($2)0 gFOUND (Rsl)o hFOUND 

1 1.000 1.000 × 104 1.000 1.50 x 10 -2 1.000 
2 1.077 0.749 x 104 0.749 1.61 X 10 .2 1.073 
3 1.113 0.636 X 104 0.636 1.69 x 10 -2 1.127 
4 1.127 0.565 X 104 0.565 1.77 X 10 -2 1.180 
6 1.141 0.494 X 104 0.494 1.87 × 10 -2 1.247 
8 1.147 0.455 X 104 0.455 1.94 X 10 -2 1.293 

(d) Results for random crosslinking of m random primary chains 

h -1/2 -1 
m gFOUND ($2)0 gFOUND (Rsl )o hFOUND 

1 1.000 1.000 x 104 1.000 1.500 x 10 -2 1.000 
2 1;052 0.811 x 104 0.811 1.584 x 10 -2 1.056 
3 1.082 0.690 x 104 0.690 1.670 x 10 -2 1.113 
4 1.103 0.614 x 104 0.614 1.735 x 10 -2 1.157 
6 1.119 0.533 x 104 0.533 1.836 x 10 -2 1.224 
8 1.140 0.484 x 104 0.484 1.891 x 10 .2 1.261 

justification for the application of this method directly to 
cyclized molecules is only apparent a posteriori, there are no 
available data for (Rsl) 0 for the system of Allen et al. 

Acceptability o f  results. ($2) 0 and (Rsl)  0 were calcula- 
ted from the distribution (R2)o as described above; if these 
had converged to within ~2~,  for 5 different Monte Carlo 
runs, the results were considered acceptable. Typically this 
required p ~ 104 cycles (see above), generally 100 choices 
for the segments i and/', for each of 100 chain topologies. 

The pseudorandom number generator SPAN used was of 
the usual multiplicative congruential type, but with a 'stream- 
splitter' incorporated to restrict cycling. It performed well 
when subjected to the usual moment, sequence, interval and 
correlation ('poker') tests. 

RESULTS AND DISCUSSION 

Chains and stars 
Results for the Monte Carlo calcultions of(S2) 0 are given 

in Tables l a - l d .  The g and h-1 values for stars should agree 
with the formulae of Zimm and Stockmayer 2, Stockmayer 

and Fixman 13, Ptitsyn 14 and Kurata and Fukatsu 3, Thus, for 
example: 

6/ 
gr(star) = (14) 

(f+ 1)(f+ 2) 

where the subscript r refers to random (see footnote) stars 
and 

3~rl/2(f+ 3)F(f+ 1) 
h~-l(star) = 16r ( f  + 3/2) (15) 

The calculated value of {$2)0. / for linear chains was found to 
be 1.000 x 104 (-+0.002 x 104) in excellent agreement with 

u 1 eq ation (4) (n = 6 x 104). However, (R s )0 was found to 
be 1.498 x 10 -2 (-+0.005 x 10 -2) compared with the value 
1.505 x 10 -2 given by equation (8). This significant discre- 
pancy (0.5%) is due to the use of integrals to approximate 
the double sum in passing from equations (6) and (7) to 
equation (8). Sums of the form: 
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Figure 2 hg -1/2 plotted against 2 X functional i ty, f, for stars or m, 
the number of crosslinked primary chains. A, Denotes the results for 
uniform stars; B, for random stars; C, for random crosslinking of 
uniform primary chains; D, random crosslinking of random primary 
chains 

i -  x 

i = 1  

are not well approximated by: 

n 

f i x di 

i 

when n is small (or x becomes large). Thus 

100 

~ i -1/2 = 18.59 

i = l  

whereas 

100 

f i-ll2di 18.00 

1 

an error of ~3%. In Tables la and lb the results forg, h -1 
and hg-1/2 found by the computer (denoted e.g. gFOUND) 
and from the continuum integral formulation (denoted e.g. 
gCONT) which gives equation (15), are compared for the star 
polymer models of different functionality. The agreement 
is en 1 1/2 • couraging, the error in g, h -  and hg- being in all 
cases less than 0.2%. 

No comparison can be made with the results obtained 
from our crosslinked primary chain and those of Kurata and 
Fukatsu, (the latter being given in unwieldy algebraic form), 
because the models are different. We regard ours as more 
realistic (and adaptable) than theirs, although the calcula- 
tions of Kajiwara 19'2° for randomly branched homopolycon- 
densates most clearly approach an easily synthesizable phy- 
sical system ~'2s by introducing the molecular weight 
heterogeneity. 

The results for our two branch random intermolecularly 
crosslinked primary chain polymer (m = 2) are expected to 
be close to that for the f =  4 random star; for the monodis- 
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perse 2-branch polymer the results should lie between those 
for random and uniform 4-branch stars. (The differences are 
due to the correlations inherent in the generation of lengths 
of the two connected chains). This is indeed observed. 
Kajiwara 2° has shown that the effect of molecular weight 
heterogeneity decreases (Rsl)0w and <Rsl)0z the weight- 
average and z-average Stokes radius with increasing func- 
tionalityf Our results and those of other coworkers 2,4,26 
show the opposite result for monodisperse polymers; this 
same counter effect of polydispersity and increasing func- 
tionality has been found in calculations of the z-average 
particle scattering factor for random polycondensates 27. 
The effect of branching is further exemplified by the plot 
of the function h/g 1/2 against functionality (for stars) and 2 
x number of chains for our crosslinked chain model. This 
function lies between 1.0 (trivially f o r f  = 1,2) and an upper 
limit of 1.39456. For randomly branched polymers h/gl/2 

1.3353'19 independent of functionality for high enough 
chain length. In Figure 2 the results for the uniform star, 
random star, monodisperse randomly crosslinked chains and 
random chain length, randomly crosslinked networks are 
plotted against f and m, respectively. The uniform stars 
yield the highest values of hg-1/2, followed by the uniform 
chains crosslinked at random. The random stars and chains 
lie close together (they should yield similar results for f = 4 
and m = 2, respectively, as explained above) and asfand m 
increase the results for the chains fall below those for the 
stars. This is expected, because for the stars the g values de- 
crease faster than for the chains, because the centre of mass 
lies close to the 'nucleus' of the star. All the curves show the 
usual curvature, although we have not investigated the asymp- 
totic behaviour at h ighf(or  m). 

Cyclized chains 
Allen et al. 7 prepared samples of linear narrow molecular 

weight distribution polystyrenes containing a proportion 
(~4%) of chloromethylated units, of which a selection were 
covalently paired by diisocyanate. Figure 3 shows their data 
(triangles), with unperturbed radius of gyration ($2)0 plotted 
against number-average intramolecular crosslinks ran" In a 
previous publication22: we showed incidentally that, whilst 
the theory of Edwards 8 gives: 

nb 2 
<S2>O'm ~ 6(m + 1) (16) 

(for large ran). The empirical equation: 

1,0~ 

075 

0 - 5 0  

0 2 5  

o 3'6 

~A 

Number of  crosslinks, ,~n 

Figure 3 g values for linear chains with m n crosslinks (intramole- 
cular cycles). The triangles represent the data of Allen et al. {see 
ref 7); for the significance of curves A, B, C, D and E, see text 
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Table 2 g values for monodisperse linear chains with m cycles 

m <S2)O,mn 1" 9mn (S2)O,min :1: groin 

0 1.00 X 104 1.00 1.00 X 104 1.000 
1 8.41 X 103 0.84 7.77 X 103 0.78 
2 7.48 X 103 0.75 6.35 X 103 0.64 
4 6.78 X 103 0.68 4.57 X 103 0.46 
8 6.10 X 103 0.61 3.07 X 103 0.31 

16 5.68× 103 0.57 1.84× 103 0.18 
32 5.35x 103 0.54 1.09 X 103 0.11 

t mn = Mean path (uses most probable path); ~: min = minimum 
path 

nb 2 
($2)0, m ~ with q ~ 0.2 (17) 

6(m+ 1)q 

fits the data better. Here m is the mean number of cycles 
(intramolecular crosslinks). With their modified theory, in- 
cluding such physical refinements as finite chain thickness, 
and length of  crosslinks, Edwards and coworkers improved 
the fit to their data, but we show here that a good part of 
the correction required may be deduced from the purely 
graph theoretical treatment we use here. 

Equation (16) is expected to be a strong lower bound on 
the estimate of(S2>0,m , because for m = 1 it givesg = 0.5 
(although the theory is not expected to be valid for such 
small rn values). This corresponds to the g value of  a cycle 
formed by joining together the two ends of  a linear chain 2'18. 
A simplistic argument enables us to deduce that a more rea- 
listic result is that 0.9 > g > 0.8 (i.e. g lies between the re- 
suits for random 3- and 4-branched stars with the same num- 
ber of  segments). Our Monte Carlo calculations have been 
carried out (see above) using either a random path in a 
graph, or the minimum path (see Table 2). These calcula- 
tions give g ~ 0.84 and 0.78, respectively, and for high 
values of  m produce the curves denoted D and E, respectively. 
Curve D is seen to fit the data adequately, and has no empi- 
rical parameters unlike fit B (based upon equation 17), the 
other curve E generates a (weaker) lower bound than curve 
A, but lies below curve C (the improved Edwards' theory). 
The Monte Carlo calculations used to generate D and E are 
expected to be invalid for large m values, but all the theore- 
tical curves have decreasing curvature, and vary little with m, 
for m (and mn) ~ 40. In the region of  interest 6 < rn n < 
40, the validity of  our approximations (and the agreement 
with experiment) is satisfactory. 

The relationship between these permanent (chemical) 
contact pairs (rings in polymer chains) and temporary phy- 
sical contact pairs and excluded volume theory have been 
pointed out in a recent publication 22. 

DISCUSSION 

The application of our computer method is not limited to 
calculation of  ($2>0 and <R s 1> 0. For example some wor- 
kers 27'2s have included the effect of excluded volume by 
modifying equation (2) to read: 

(R2.> = I i - / I  l+e b 2 (18) 

where e is a parameter 0 ~< e ~ 0.2 to account for the expan- 
sion of  the polymer coil in good solvents. 

As a further example, the particle scattering factor of  
polymer chains is conventionally found by:°: 

1 
P(O) = 2n-- ~ - ~ ~ sin(P'Ri/) (19) 

/ > i p.Rg 

with/~ the scattering vector equal to (47r/X) sin (0/2), with 0 
the scattering angle and X the wavelength of light in the 
medium. 

Both these expressions are easily incorporated into our 
programs, and results produced for any arbitrary distribu- 
tion of  li - ] i (molecular weight distribution). We hope to 
investigate such problems in a later publication. 

CONCLUSION 

A Monte Carlo method has been used to calculate unpertur- 
bed dimensions of  branch chain, star and cyclized polymers. 
Agreement with previous theory and experiment is satisfac- 
tory, and the method may be readily extended to more diffi- 
cult averages over configurations and molecular chain length 
distributions. 
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